Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     
Sommer 2025    Hilfe  Trennstrich  Sitemap  Trennstrich  Impressum  Trennstrich  Datenschutz  Trennstrich  node1  Trennstrich  Switch to english language

Veranstaltung

Neuere Entwicklungen der demographischen Forschung - Introduction to Computational Social Science

  • Funktionen:

Grunddaten

Veranstaltungsart Seminar SWS 2.00
Veranstaltungsnummer 59879 Semester SS 2025
Sprache Englisch Studienjahr
Hyperlink Stud.IP Link zu dieser Lehrveranstaltung in Stud.IP

Belegung über StudIP

Status Link
offene Belegung (kein Anmeldeverfahren)    Link

Module

3750350 Neuere Entwicklungen der demographischen Forschung

Termine Gruppe: [unbenannt] iCalendar Export für Outlook

  Tag Zeit Rhythmus Dauer Raum Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export für Outlook
Do. 11:15 bis 12:45 woch 03.04.2025 bis 18.07.2025  Ulmenstr. 69 - R 227, PC-Pool, Ulmenstr. 69, Haus 1 Raumplan Akbaritabar findet statt    
Gruppe [unbenannt]:
 

Verantwortliche Personen

Verantwortliche Personen Zuständigkeit
Dr. phil. Aliakbar Akbaritabar verantwortlich
Johanna Seletzkie

Studiengänge

Studiengang/Abschluss/Prüfungsversion Semester Teilnahmeart
Demographie, Master (2023) 2. - 4. Semester wahlobligatorisch
Soziologie, Master (2020) 2. - 4. Semester wahlobligatorisch
Soziologie, Master (2024) 2. - 4. Semester wahlobligatorisch
Volkswirtschaftslehre, Master (2022) 2. - 4. Semester wahlobligatorisch

Zuordnung zu Einrichtungen

Wirtschafts- und Sozialwissenschaftliche Fakultät (WSF)

Inhalt

Lerninhalte

Computational Social Science (CSS) is a scientific discipline where computational tools and techniques are used to answer research questions that could be social in nature. This area has attracted two groups of scientists: a) social scientists with computational skills, and b) computational scientists with an interest in questions related to social phenomena. The advent of social media and online social networks has led to increased digitization of human interactions and exponential growth of the digital traces left behind in these interactions. Both of these groups of scientists know the value of these digital trace data and have the skills to analyze them. Generally, research projects, including in CSS, could follow two main approaches: data-driven (inductive) or theory-driven (deductive). While the data-driven approach might start from an inductive or bottom-up exploration of the data to find general patterns, the theory-driven approach -predominantly used in social sciences- usually starts with a question and follows a few steps: Question and theorize, Gather and pre-process data, Model, and Report and publish.

By the end of this course, students will be familiar with deductive and inductive approaches to research. They will have knowledge of different research questions, data sources and possible answers for the questions provided in Computational Social Science. They will also learn about ethics in research using digital trace data.

Einführende Literatur:

  • Salganik, M. J. (2018). Bit by bit: Social research in the digital age. Princeton University Press
  • Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., & Van Alstyne, M. (2009). Computational Social Science. Science, 323(5915), 721–723. https://doi.org/10.1126/science.1167742
  • Lazer, D. M. J., Pentland, A., Watts, D. J., Aral, S., Athey, S., Contractor, N., Freelon, D., Gonzalez-Bailon, S., King, G., Margetts, H., Nelson, A., Salganik, M. J., Strohmaier, M., Vespignani, A., & Wagner, C. (2020). Computational social science: Obstacles and opportunities. Science, 369(6507), 1060–1062. https://doi.org/10.1126/science.aaz8170
  • Kashyap, R., Rinderknecht, R. G., Akbaritabar, A., Alburez-Gutierrez, D., Gil-Clavel, S., Grow, A., Kim, J., Leasure, D. R., Lohmann, S., Negraia, D. V., Perrotta, D., Rampazzo, F., Tsai, C.-J., Verhagen, M. D., Zagheni, E., & Zhao, X. (2023). Digital and computational demography. In Research Handbook on Digital Sociology (pp. 48–86). Edward Elgar Publishing. https://www.elgaronline.com/edcollchap/book/9781789906769/book-part-9781789906769-10.xml preprint is openly accessible here: https://osf.io/preprints/socarxiv/7bvpt
  • Macy, M. W., & Willer, R. (2002). From Factors to Actors: Computational Sociology and Agent-Based Modeling. Annual Review of Sociology, 28(1), 143–166. https://doi.org/10.1146/annurev.soc.28.110601.141117
  • Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojevic, S., Petersen, A. M., Radicchi, F., Sinatra, R., Uzzi, B., Vespignani, A., Waltman, L., Wang, D., & Barabási, A.-L. (2018). Science of science. Science, 359(6379), eaao0185. https://doi.org/10.1126/science.aao0185
  • Cioffi-Revilla, C. (2017). Introduction to Computational Social Science. Springer International Publishing. https://doi.org/10.1007/978-3-319-50131-4

Strukturbaum

Die Veranstaltung wurde 3 mal im Vorlesungsverzeichnis Sommer 2025 gefunden:
Master Demographie · · · · [+]
Master Soziologie · · · · [+]
Master Volkswirtschaftslehre · · · · [+]