Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     
Winter 2021/22    Hilfe  Trennstrich  Sitemap  Trennstrich  Impressum  Trennstrich  Datenschutz  Trennstrich  node1  Trennstrich  Switch to english language

Veranstaltung

Künstliche Intelligenz II: Grundlagen des maschinellen Lernens

  • Funktionen:

Grunddaten

Veranstaltungsart Vorlesung SWS 3.00
Veranstaltungsnummer 23834 Semester WS 2021/22
Sprache Deutsch Studienjahr
Hyperlink Stud.IP Link zu dieser Lehrveranstaltung in Stud.IP

Belegung über StudIP

Status Link
offene Belegung (kein Anmeldeverfahren)    Link

Module

1101090 Mustererkennung und Kontextanalyse
1150750 Ergänzende Themen im Themenbereich Smart Computing
1150800 Ausgewählte Themen im Themenbereich Smart Computing
1151430 Intelligente Informationssysteme: Grundlagen des maschinellen Lernens

Termine Gruppe: [unbenannt] iCalendar Export für Outlook

  Tag Zeit Rhythmus Dauer Raum Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
iCalendar Export für Outlook
Mo. 11:00 bis 13:00 woch 11.10.2021 bis 24.01.2022  Onlineveranstaltung - Onlineveranstaltung Raumplan Kirste findet statt    
Einzeltermine anzeigen
iCalendar Export für Outlook
Di. 17:00 bis 19:00 ungerWoch 12.10.2021 bis 18.01.2022  Onlineveranstaltung - Onlineveranstaltung Raumplan Kirste findet statt    
Gruppe [unbenannt]:
 

Verantwortliche Personen

Verantwortliche Personen Zuständigkeit
Prof. Dr.-Ing. Thomas Kirste
Dr.-Ing. Stefan Lüdtke

Studiengänge

Studiengang/Abschluss/Prüfungsversion Semester Teilnahmeart
Computer Science International, Master (2020) 1. - 3. Semester wahlobligatorisch
Informatik, Master (2013) 1. - 2. Semester wahlobligatorisch
Informationstechnik/Technische Informatik, Master (2013) 1. - 3. Semester wahlobligatorisch
Informationstechnik/Technische Informatik, Master (2020) 1. - 3. Semester wahlobligatorisch
Medizinische Informationstechnik, Bachelor (2019) 5. Semester obligatorisch
Umweltingenieurwissenschaften, Master (2019) 1. - 2. Semester wahlobligatorisch
Visual Computing, Master (2014) 1. - 4. Semester wahlobligatorisch
Wirtschaftsinformatik, Master (2018) 1. - 2. Semester wahlobligatorisch
Wirtschaftsinformatik, Master (2021) 1. - 2. Semester wahlobligatorisch

Zuordnung zu Einrichtungen

Fakultät für Informatik und Elektrotechnik (IEF)

Inhalt

Kommentar

In der Lehrveranstaltung „Künstliche Intelligenz II: Grundlagen des maschinellen Lernens“ werden die grundlegenden Konzepte und Methoden für die Verarbeitung von Daten mithilfe maschineller Lernverfahren eingeführt. Nach eine Einführung in das Thema werden zunächst die Grundlagen der Signalverarbeitung, sowie die Gewinnung und Analyse von abstrakteren Merkmalen aus den Rohdaten behandelt. Im Anschluss werden einzelne Ansätze und Lernverfahren im Detail untersucht. Zu diesen gehören

- Bayes’sche Entscheidungstheorie

- Parameterschätzung

- Nichtparametrische Methoden

- Support-Vector Machines

- Nichtmetrische Methoden: Entscheidungsbäume

- Algorithmenunabhänge Verfahren

- Prüfung: schriftlich, Vorbedingung: Hausaufgaben

Literatur

Ausführliche Literaturhinweise werden in der Vorlesung zur Verfügung gestellt.

- „Hands-On Machine Learning with Scikit-Learn & TensorFlow“ Géron A, O’Reilly 2017

- „Pattern Classification“ Duda RO, Hart PE, Stork DG. Wiley, 2nd edition, 2003.

- „Pattern Recognition“ Bishop C. Springer, 2006.

- „The Elements of Statistical Learning – Data Mining, Inference, and Prediction“ Hastie T, Tibshirani R, Friedman J. Springer, 2001.

Lerninhalte

- Signalverarbeitung

- Merkmalsextraktion und -berechnung

- Klassifikationsverfahren

- Bayes’sche Entscheidungstheorie (z.B. Bayes’ Classifier)

- Parameterschätzung (z.B. Maximum Likelihood Schätzer)

- Nichtparametrische Lernverfahren (z.B. KNN)

- Support Vector Machines

- Entscheidungsbäume



Zugehörige weitere Veranstaltung
Nr. Veranstaltungsart Beschreibung SWS
23834 Übung Künstliche Intelligenz II: Grundlagen des maschinellen Lernens 1.00

Strukturbaum

Die Veranstaltung wurde 6 mal im Vorlesungsverzeichnis Winter 2021/22 gefunden:
Master Informatik · · · · [+]
Master Wirtschaftsinformatik · · · · [+]